If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=19x+84+x^2
We move all terms to the left:
0-(19x+84+x^2)=0
We add all the numbers together, and all the variables
-(19x+84+x^2)=0
We get rid of parentheses
-x^2-19x-84=0
We add all the numbers together, and all the variables
-1x^2-19x-84=0
a = -1; b = -19; c = -84;
Δ = b2-4ac
Δ = -192-4·(-1)·(-84)
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-5}{2*-1}=\frac{14}{-2} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+5}{2*-1}=\frac{24}{-2} =-12 $
| 3(x+9)=7x+1 | | 2(6+4x)-2=3(2x+4) | | 35x=1 | | 3/4(y-10)=12 | | -4/5(10-15x)=4 | | 2x+18=26-4x | | 2x+5=6-33x | | 16-|4x-5|=6 | | 2/5y+6=-2 | | 1/5x+6=3/5+5 | | 9x-18=6x+4 | | 5r/8=14.3-2.8 | | 3(q=7)=27 | | 9^3x+1=121 | | 6(x-3)=4x+1 | | -x+-x+5+5=-x+-x+-x+17 | | 180=95(x−273.15)+32 | | 1/2x-1=3 | | (5x-2)(5x-2)/4x=0 | | x/4+1=−10 | | n÷2+5=3 | | 10x+24=8(x+2)+2x | | (5x-2)(5-2)/4x=0 | | 2x-41=1 | | y+16=4(y-9) | | 2(w+8)=1/2(6w+8) | | 2(x-3)+5x=3x+6x-18 | | 3(x+x+1)=39 | | -10v+5/8+23/8=-3/4 | | 3x+2=16+x | | 4x^2+4x−168=0 | | (25^2-20x+4)/4x=0 |